Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cadbii.1 | |- ( ph <-> ps ) |
|
cadbii.2 | |- ( ch <-> th ) |
||
cadbii.3 | |- ( ta <-> et ) |
||
Assertion | cadbi123i | |- ( cadd ( ph , ch , ta ) <-> cadd ( ps , th , et ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadbii.1 | |- ( ph <-> ps ) |
|
2 | cadbii.2 | |- ( ch <-> th ) |
|
3 | cadbii.3 | |- ( ta <-> et ) |
|
4 | 1 | a1i | |- ( T. -> ( ph <-> ps ) ) |
5 | 2 | a1i | |- ( T. -> ( ch <-> th ) ) |
6 | 3 | a1i | |- ( T. -> ( ta <-> et ) ) |
7 | 4 5 6 | cadbi123d | |- ( T. -> ( cadd ( ph , ch , ta ) <-> cadd ( ps , th , et ) ) ) |
8 | 7 | mptru | |- ( cadd ( ph , ch , ta ) <-> cadd ( ps , th , et ) ) |