Metamath Proof Explorer


Theorem cadbi123i

Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses cadbii.1 φ ψ
cadbii.2 χ θ
cadbii.3 τ η
Assertion cadbi123i cadd φ χ τ cadd ψ θ η

Proof

Step Hyp Ref Expression
1 cadbii.1 φ ψ
2 cadbii.2 χ θ
3 cadbii.3 τ η
4 1 a1i φ ψ
5 2 a1i χ θ
6 3 a1i τ η
7 4 5 6 cadbi123d cadd φ χ τ cadd ψ θ η
8 7 mptru cadd φ χ τ cadd ψ θ η