Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cadbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| cadbii.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | ||
| cadbii.3 | ⊢ ( 𝜏 ↔ 𝜂 ) | ||
| Assertion | cadbi123i | ⊢ ( cadd ( 𝜑 , 𝜒 , 𝜏 ) ↔ cadd ( 𝜓 , 𝜃 , 𝜂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cadbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | cadbii.2 | ⊢ ( 𝜒 ↔ 𝜃 ) | |
| 3 | cadbii.3 | ⊢ ( 𝜏 ↔ 𝜂 ) | |
| 4 | 1 | a1i | ⊢ ( ⊤ → ( 𝜑 ↔ 𝜓 ) ) |
| 5 | 2 | a1i | ⊢ ( ⊤ → ( 𝜒 ↔ 𝜃 ) ) |
| 6 | 3 | a1i | ⊢ ( ⊤ → ( 𝜏 ↔ 𝜂 ) ) |
| 7 | 4 5 6 | cadbi123d | ⊢ ( ⊤ → ( cadd ( 𝜑 , 𝜒 , 𝜏 ) ↔ cadd ( 𝜓 , 𝜃 , 𝜂 ) ) ) |
| 8 | 7 | mptru | ⊢ ( cadd ( 𝜑 , 𝜒 , 𝜏 ) ↔ cadd ( 𝜓 , 𝜃 , 𝜂 ) ) |