Metamath Proof Explorer


Theorem cadcoma

Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion cadcoma ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜑 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
2 xorcom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
3 2 anbi2i ( ( 𝜒 ∧ ( 𝜑𝜓 ) ) ↔ ( 𝜒 ∧ ( 𝜓𝜑 ) ) )
4 1 3 orbi12i ( ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) ↔ ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ( 𝜓𝜑 ) ) ) )
5 df-cad ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜒 ∧ ( 𝜑𝜓 ) ) ) )
6 df-cad ( cadd ( 𝜓 , 𝜑 , 𝜒 ) ↔ ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ( 𝜓𝜑 ) ) ) )
7 4 5 6 3bitr4i ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜓 , 𝜑 , 𝜒 ) )