| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cadan |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 2 |
|
3ancoma |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ) |
| 3 |
|
orcom |
⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ( 𝜒 ∨ 𝜓 ) ) |
| 4 |
3
|
3anbi3i |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜒 ∨ 𝜓 ) ) ) |
| 5 |
1 2 4
|
3bitri |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜒 ∨ 𝜓 ) ) ) |
| 6 |
|
cadan |
⊢ ( cadd ( 𝜑 , 𝜒 , 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜓 ) ∧ ( 𝜒 ∨ 𝜓 ) ) ) |
| 7 |
5 6
|
bitr4i |
⊢ ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜑 , 𝜒 , 𝜓 ) ) |