Metamath Proof Explorer


Theorem cadcomb

Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 11-Jul-2020)

Ref Expression
Assertion cadcomb ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜑 , 𝜒 , 𝜓 ) )

Proof

Step Hyp Ref Expression
1 cadan ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜓𝜒 ) ) )
2 3ancoma ( ( ( 𝜑𝜓 ) ∧ ( 𝜑𝜒 ) ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜒 ) ∧ ( 𝜑𝜓 ) ∧ ( 𝜓𝜒 ) ) )
3 orcom ( ( 𝜓𝜒 ) ↔ ( 𝜒𝜓 ) )
4 3 3anbi3i ( ( ( 𝜑𝜒 ) ∧ ( 𝜑𝜓 ) ∧ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜒 ) ∧ ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )
5 1 2 4 3bitri ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑𝜒 ) ∧ ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )
6 cadan ( cadd ( 𝜑 , 𝜒 , 𝜓 ) ↔ ( ( 𝜑𝜒 ) ∧ ( 𝜑𝜓 ) ∧ ( 𝜒𝜓 ) ) )
7 5 6 bitr4i ( cadd ( 𝜑 , 𝜓 , 𝜒 ) ↔ cadd ( 𝜑 , 𝜒 , 𝜓 ) )