Step |
Hyp |
Ref |
Expression |
1 |
|
cadan |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ps \/ ch ) ) ) |
2 |
|
3ancoma |
|- ( ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ps \/ ch ) ) ) |
3 |
|
orcom |
|- ( ( ps \/ ch ) <-> ( ch \/ ps ) ) |
4 |
3
|
3anbi3i |
|- ( ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ps \/ ch ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ch \/ ps ) ) ) |
5 |
1 2 4
|
3bitri |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ch \/ ps ) ) ) |
6 |
|
cadan |
|- ( cadd ( ph , ch , ps ) <-> ( ( ph \/ ch ) /\ ( ph \/ ps ) /\ ( ch \/ ps ) ) ) |
7 |
5 6
|
bitr4i |
|- ( cadd ( ph , ps , ch ) <-> cadd ( ph , ch , ps ) ) |