Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
|- ( ( ph /\ ps ) <-> ( ps /\ ph ) ) |
2 |
|
xorcom |
|- ( ( ph \/_ ps ) <-> ( ps \/_ ph ) ) |
3 |
2
|
anbi2i |
|- ( ( ch /\ ( ph \/_ ps ) ) <-> ( ch /\ ( ps \/_ ph ) ) ) |
4 |
1 3
|
orbi12i |
|- ( ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) <-> ( ( ps /\ ph ) \/ ( ch /\ ( ps \/_ ph ) ) ) ) |
5 |
|
df-cad |
|- ( cadd ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( ch /\ ( ph \/_ ps ) ) ) ) |
6 |
|
df-cad |
|- ( cadd ( ps , ph , ch ) <-> ( ( ps /\ ph ) \/ ( ch /\ ( ps \/_ ph ) ) ) ) |
7 |
4 5 6
|
3bitr4i |
|- ( cadd ( ph , ps , ch ) <-> cadd ( ps , ph , ch ) ) |