Metamath Proof Explorer


Theorem cadbi123d

Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses cadbid.1 φ ψ χ
cadbid.2 φ θ τ
cadbid.3 φ η ζ
Assertion cadbi123d φ cadd ψ θ η cadd χ τ ζ

Proof

Step Hyp Ref Expression
1 cadbid.1 φ ψ χ
2 cadbid.2 φ θ τ
3 cadbid.3 φ η ζ
4 1 2 anbi12d φ ψ θ χ τ
5 1 2 xorbi12d φ ψ θ χ τ
6 3 5 anbi12d φ η ψ θ ζ χ τ
7 4 6 orbi12d φ ψ θ η ψ θ χ τ ζ χ τ
8 df-cad cadd ψ θ η ψ θ η ψ θ
9 df-cad cadd χ τ ζ χ τ ζ χ τ
10 7 8 9 3bitr4g φ cadd ψ θ η cadd χ τ ζ