Metamath Proof Explorer


Theorem cadbi123d

Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Hypotheses cadbid.1 φψχ
cadbid.2 φθτ
cadbid.3 φηζ
Assertion cadbi123d φcaddψθηcaddχτζ

Proof

Step Hyp Ref Expression
1 cadbid.1 φψχ
2 cadbid.2 φθτ
3 cadbid.3 φηζ
4 1 2 anbi12d φψθχτ
5 1 2 xorbi12d φψθχτ
6 3 5 anbi12d φηψθζχτ
7 4 6 orbi12d φψθηψθχτζχτ
8 df-cad caddψθηψθηψθ
9 df-cad caddχτζχτζχτ
10 7 8 9 3bitr4g φcaddψθηcaddχτζ