Step |
Hyp |
Ref |
Expression |
1 |
|
caovcomg.1 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
2 |
1
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. S ( x F y ) = ( y F x ) ) |
3 |
|
oveq1 |
|- ( x = A -> ( x F y ) = ( A F y ) ) |
4 |
|
oveq2 |
|- ( x = A -> ( y F x ) = ( y F A ) ) |
5 |
3 4
|
eqeq12d |
|- ( x = A -> ( ( x F y ) = ( y F x ) <-> ( A F y ) = ( y F A ) ) ) |
6 |
|
oveq2 |
|- ( y = B -> ( A F y ) = ( A F B ) ) |
7 |
|
oveq1 |
|- ( y = B -> ( y F A ) = ( B F A ) ) |
8 |
6 7
|
eqeq12d |
|- ( y = B -> ( ( A F y ) = ( y F A ) <-> ( A F B ) = ( B F A ) ) ) |
9 |
5 8
|
rspc2v |
|- ( ( A e. S /\ B e. S ) -> ( A. x e. S A. y e. S ( x F y ) = ( y F x ) -> ( A F B ) = ( B F A ) ) ) |
10 |
2 9
|
mpan9 |
|- ( ( ph /\ ( A e. S /\ B e. S ) ) -> ( A F B ) = ( B F A ) ) |