Description: A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardsn | |- ( A e. V -> ( card ` { A } ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { A } = { A } |
|
| 2 | sneq | |- ( x = A -> { x } = { A } ) |
|
| 3 | 2 | eqeq2d | |- ( x = A -> ( { A } = { x } <-> { A } = { A } ) ) |
| 4 | 3 | spcegv | |- ( A e. V -> ( { A } = { A } -> E. x { A } = { x } ) ) |
| 5 | 1 4 | mpi | |- ( A e. V -> E. x { A } = { x } ) |
| 6 | card1 | |- ( ( card ` { A } ) = 1o <-> E. x { A } = { x } ) |
|
| 7 | 5 6 | sylibr | |- ( A e. V -> ( card ` { A } ) = 1o ) |