Metamath Proof Explorer


Theorem cbvditgdavw

Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvditgdavw.1
|- ( ( ph /\ x = y ) -> C = D )
Assertion cbvditgdavw
|- ( ph -> S_ [ A -> B ] C _d x = S_ [ A -> B ] D _d y )

Proof

Step Hyp Ref Expression
1 cbvditgdavw.1
 |-  ( ( ph /\ x = y ) -> C = D )
2 1 cbvitgdavw
 |-  ( ph -> S. ( A (,) B ) C _d x = S. ( A (,) B ) D _d y )
3 1 cbvitgdavw
 |-  ( ph -> S. ( B (,) A ) C _d x = S. ( B (,) A ) D _d y )
4 3 negeqd
 |-  ( ph -> -u S. ( B (,) A ) C _d x = -u S. ( B (,) A ) D _d y )
5 2 4 ifeq12d
 |-  ( ph -> if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x ) = if ( A <_ B , S. ( A (,) B ) D _d y , -u S. ( B (,) A ) D _d y ) )
6 df-ditg
 |-  S_ [ A -> B ] C _d x = if ( A <_ B , S. ( A (,) B ) C _d x , -u S. ( B (,) A ) C _d x )
7 df-ditg
 |-  S_ [ A -> B ] D _d y = if ( A <_ B , S. ( A (,) B ) D _d y , -u S. ( B (,) A ) D _d y )
8 5 6 7 3eqtr4g
 |-  ( ph -> S_ [ A -> B ] C _d x = S_ [ A -> B ] D _d y )