Metamath Proof Explorer


Theorem cbvditgdavw

Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvditgdavw.1 φ x = y C = D
Assertion cbvditgdavw φ A B C dx = A B D dy

Proof

Step Hyp Ref Expression
1 cbvditgdavw.1 φ x = y C = D
2 1 cbvitgdavw φ A B C dx = A B D dy
3 1 cbvitgdavw φ B A C dx = B A D dy
4 3 negeqd φ B A C dx = B A D dy
5 2 4 ifeq12d φ if A B A B C dx B A C dx = if A B A B D dy B A D dy
6 df-ditg A B C dx = if A B A B C dx B A C dx
7 df-ditg A B D dy = if A B A B D dy B A D dy
8 5 6 7 3eqtr4g φ A B C dx = A B D dy