Metamath Proof Explorer


Theorem cbvitgdavw

Description: Change bound variable in an integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvitgdavw.1 φ x = y B = C
Assertion cbvitgdavw φ A B dx = A C dy

Proof

Step Hyp Ref Expression
1 cbvitgdavw.1 φ x = y B = C
2 1 fvoveq1d φ x = y B i t = C i t
3 eleq1w x = y x A y A
4 3 adantl φ x = y x A y A
5 4 anbi1d φ x = y x A 0 v y A 0 v
6 5 ifbid φ x = y if x A 0 v v 0 = if y A 0 v v 0
7 2 6 csbeq12dv φ x = y B i t / v if x A 0 v v 0 = C i t / v if y A 0 v v 0
8 7 cbvmptdavw φ x B i t / v if x A 0 v v 0 = y C i t / v if y A 0 v v 0
9 8 fveq2d φ 2 x B i t / v if x A 0 v v 0 = 2 y C i t / v if y A 0 v v 0
10 9 oveq2d φ i t 2 x B i t / v if x A 0 v v 0 = i t 2 y C i t / v if y A 0 v v 0
11 10 sumeq2sdv φ t = 0 3 i t 2 x B i t / v if x A 0 v v 0 = t = 0 3 i t 2 y C i t / v if y A 0 v v 0
12 df-itg A B dx = t = 0 3 i t 2 x B i t / v if x A 0 v v 0
13 df-itg A C dy = t = 0 3 i t 2 y C i t / v if y A 0 v v 0
14 11 12 13 3eqtr4g φ A B dx = A C dy