Metamath Proof Explorer


Theorem cbvmptdavw

Description: Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvmptdavw.1 φ x = y B = C
Assertion cbvmptdavw φ x A B = y A C

Proof

Step Hyp Ref Expression
1 cbvmptdavw.1 φ x = y B = C
2 eleq1w x = y x A y A
3 2 adantl φ x = y x A y A
4 1 eqeq2d φ x = y t = B t = C
5 3 4 anbi12d φ x = y x A t = B y A t = C
6 5 cbvopab1davw φ x t | x A t = B = y t | y A t = C
7 df-mpt x A B = x t | x A t = B
8 df-mpt y A C = y t | y A t = C
9 6 7 8 3eqtr4g φ x A B = y A C