Metamath Proof Explorer


Theorem cbvdisjdavw

Description: Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvdisjdavw.1 φ x = y B = C
Assertion cbvdisjdavw φ Disj x A B Disj y A C

Proof

Step Hyp Ref Expression
1 cbvdisjdavw.1 φ x = y B = C
2 1 eleq2d φ x = y t B t C
3 2 cbvrmodavw φ * x A t B * y A t C
4 3 albidv φ t * x A t B t * y A t C
5 df-disj Disj x A B t * x A t B
6 df-disj Disj y A C t * y A t C
7 4 5 6 3bitr4g φ Disj x A B Disj y A C