Description: Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvdisjdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) | |
Assertion | cbvdisjdavw | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisjdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) | |
2 | 1 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 ∈ 𝐵 ↔ 𝑡 ∈ 𝐶 ) ) |
3 | 2 | cbvrmodavw | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∃* 𝑦 ∈ 𝐴 𝑡 ∈ 𝐶 ) ) |
4 | 3 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑡 ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∀ 𝑡 ∃* 𝑦 ∈ 𝐴 𝑡 ∈ 𝐶 ) ) |
5 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑡 ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ) | |
6 | df-disj | ⊢ ( Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀ 𝑡 ∃* 𝑦 ∈ 𝐴 𝑡 ∈ 𝐶 ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶 ) ) |