Metamath Proof Explorer


Theorem cbvdisjdavw

Description: Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvdisjdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
Assertion cbvdisjdavw ( 𝜑 → ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 cbvdisjdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
2 1 eleq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝐵𝑡𝐶 ) )
3 2 cbvrmodavw ( 𝜑 → ( ∃* 𝑥𝐴 𝑡𝐵 ↔ ∃* 𝑦𝐴 𝑡𝐶 ) )
4 3 albidv ( 𝜑 → ( ∀ 𝑡 ∃* 𝑥𝐴 𝑡𝐵 ↔ ∀ 𝑡 ∃* 𝑦𝐴 𝑡𝐶 ) )
5 df-disj ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑡 ∃* 𝑥𝐴 𝑡𝐵 )
6 df-disj ( Disj 𝑦𝐴 𝐶 ↔ ∀ 𝑡 ∃* 𝑦𝐴 𝑡𝐶 )
7 4 5 6 3bitr4g ( 𝜑 → ( Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶 ) )