Metamath Proof Explorer


Theorem cbviotadavw

Description: Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviotadavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbviotadavw ( 𝜑 → ( ℩ 𝑥 𝜓 ) = ( ℩ 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbviotadavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 1 cbvabdavw ( 𝜑 → { 𝑥𝜓 } = { 𝑦𝜒 } )
3 2 eqeq1d ( 𝜑 → ( { 𝑥𝜓 } = { 𝑡 } ↔ { 𝑦𝜒 } = { 𝑡 } ) )
4 3 abbidv ( 𝜑 → { 𝑡 ∣ { 𝑥𝜓 } = { 𝑡 } } = { 𝑡 ∣ { 𝑦𝜒 } = { 𝑡 } } )
5 4 unieqd ( 𝜑 { 𝑡 ∣ { 𝑥𝜓 } = { 𝑡 } } = { 𝑡 ∣ { 𝑦𝜒 } = { 𝑡 } } )
6 df-iota ( ℩ 𝑥 𝜓 ) = { 𝑡 ∣ { 𝑥𝜓 } = { 𝑡 } }
7 df-iota ( ℩ 𝑦 𝜒 ) = { 𝑡 ∣ { 𝑦𝜒 } = { 𝑡 } }
8 5 6 7 3eqtr4g ( 𝜑 → ( ℩ 𝑥 𝜓 ) = ( ℩ 𝑦 𝜒 ) )