Description: Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbviotadavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | cbviotadavw | ⊢ ( 𝜑 → ( ℩ 𝑥 𝜓 ) = ( ℩ 𝑦 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviotadavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | cbvabdavw | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑦 ∣ 𝜒 } ) |
3 | 2 | eqeq1d | ⊢ ( 𝜑 → ( { 𝑥 ∣ 𝜓 } = { 𝑡 } ↔ { 𝑦 ∣ 𝜒 } = { 𝑡 } ) ) |
4 | 3 | abbidv | ⊢ ( 𝜑 → { 𝑡 ∣ { 𝑥 ∣ 𝜓 } = { 𝑡 } } = { 𝑡 ∣ { 𝑦 ∣ 𝜒 } = { 𝑡 } } ) |
5 | 4 | unieqd | ⊢ ( 𝜑 → ∪ { 𝑡 ∣ { 𝑥 ∣ 𝜓 } = { 𝑡 } } = ∪ { 𝑡 ∣ { 𝑦 ∣ 𝜒 } = { 𝑡 } } ) |
6 | df-iota | ⊢ ( ℩ 𝑥 𝜓 ) = ∪ { 𝑡 ∣ { 𝑥 ∣ 𝜓 } = { 𝑡 } } | |
7 | df-iota | ⊢ ( ℩ 𝑦 𝜒 ) = ∪ { 𝑡 ∣ { 𝑦 ∣ 𝜒 } = { 𝑡 } } | |
8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ( ℩ 𝑥 𝜓 ) = ( ℩ 𝑦 𝜒 ) ) |