Metamath Proof Explorer


Theorem cbviotadavw

Description: Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviotadavw.1 φ x = y ψ χ
Assertion cbviotadavw φ ι x | ψ = ι y | χ

Proof

Step Hyp Ref Expression
1 cbviotadavw.1 φ x = y ψ χ
2 1 cbvabdavw φ x | ψ = y | χ
3 2 eqeq1d φ x | ψ = t y | χ = t
4 3 abbidv φ t | x | ψ = t = t | y | χ = t
5 4 unieqd φ t | x | ψ = t = t | y | χ = t
6 df-iota ι x | ψ = t | x | ψ = t
7 df-iota ι y | χ = t | y | χ = t
8 5 6 7 3eqtr4g φ ι x | ψ = ι y | χ