Metamath Proof Explorer


Theorem cbviotadavw

Description: Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviotadavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbviotadavw
|- ( ph -> ( iota x ps ) = ( iota y ch ) )

Proof

Step Hyp Ref Expression
1 cbviotadavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 cbvabdavw
 |-  ( ph -> { x | ps } = { y | ch } )
3 2 eqeq1d
 |-  ( ph -> ( { x | ps } = { t } <-> { y | ch } = { t } ) )
4 3 abbidv
 |-  ( ph -> { t | { x | ps } = { t } } = { t | { y | ch } = { t } } )
5 4 unieqd
 |-  ( ph -> U. { t | { x | ps } = { t } } = U. { t | { y | ch } = { t } } )
6 df-iota
 |-  ( iota x ps ) = U. { t | { x | ps } = { t } }
7 df-iota
 |-  ( iota y ch ) = U. { t | { y | ch } = { t } }
8 5 6 7 3eqtr4g
 |-  ( ph -> ( iota x ps ) = ( iota y ch ) )