Metamath Proof Explorer


Theorem cbvriotadavw

Description: Change bound variable in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvriotadavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvriotadavw
|- ( ph -> ( iota_ x e. A ps ) = ( iota_ y e. A ch ) )

Proof

Step Hyp Ref Expression
1 cbvriotadavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
4 3 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) )
5 4 cbviotadavw
 |-  ( ph -> ( iota x ( x e. A /\ ps ) ) = ( iota y ( y e. A /\ ch ) ) )
6 df-riota
 |-  ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) )
7 df-riota
 |-  ( iota_ y e. A ch ) = ( iota y ( y e. A /\ ch ) )
8 5 6 7 3eqtr4g
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ y e. A ch ) )