Metamath Proof Explorer


Theorem cbvriotadavw

Description: Change bound variable in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvriotadavw.1 φ x = y ψ χ
Assertion cbvriotadavw φ ι x A | ψ = ι y A | χ

Proof

Step Hyp Ref Expression
1 cbvriotadavw.1 φ x = y ψ χ
2 eleq1w x = y x A y A
3 2 adantl φ x = y x A y A
4 3 1 anbi12d φ x = y x A ψ y A χ
5 4 cbviotadavw φ ι x | x A ψ = ι y | y A χ
6 df-riota ι x A | ψ = ι x | x A ψ
7 df-riota ι y A | χ = ι y | y A χ
8 5 6 7 3eqtr4g φ ι x A | ψ = ι y A | χ