Description: Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvdisjdavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
Assertion | cbvdisjdavw | |- ( ph -> ( Disj_ x e. A B <-> Disj_ y e. A C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisjdavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
2 | 1 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) ) |
3 | 2 | cbvrmodavw | |- ( ph -> ( E* x e. A t e. B <-> E* y e. A t e. C ) ) |
4 | 3 | albidv | |- ( ph -> ( A. t E* x e. A t e. B <-> A. t E* y e. A t e. C ) ) |
5 | df-disj | |- ( Disj_ x e. A B <-> A. t E* x e. A t e. B ) |
|
6 | df-disj | |- ( Disj_ y e. A C <-> A. t E* y e. A t e. C ) |
|
7 | 4 5 6 | 3bitr4g | |- ( ph -> ( Disj_ x e. A B <-> Disj_ y e. A C ) ) |