Metamath Proof Explorer


Theorem cbvdisjdavw

Description: Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvdisjdavw.1
|- ( ( ph /\ x = y ) -> B = C )
Assertion cbvdisjdavw
|- ( ph -> ( Disj_ x e. A B <-> Disj_ y e. A C ) )

Proof

Step Hyp Ref Expression
1 cbvdisjdavw.1
 |-  ( ( ph /\ x = y ) -> B = C )
2 1 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) )
3 2 cbvrmodavw
 |-  ( ph -> ( E* x e. A t e. B <-> E* y e. A t e. C ) )
4 3 albidv
 |-  ( ph -> ( A. t E* x e. A t e. B <-> A. t E* y e. A t e. C ) )
5 df-disj
 |-  ( Disj_ x e. A B <-> A. t E* x e. A t e. B )
6 df-disj
 |-  ( Disj_ y e. A C <-> A. t E* y e. A t e. C )
7 4 5 6 3bitr4g
 |-  ( ph -> ( Disj_ x e. A B <-> Disj_ y e. A C ) )