| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvrmodavw.1 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
| 2 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
| 3 |
2
|
adantl |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) ) |
| 4 |
3 1
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) ) |
| 5 |
4
|
cbvmodavw |
|- ( ph -> ( E* x ( x e. A /\ ps ) <-> E* y ( y e. A /\ ch ) ) ) |
| 6 |
|
df-rmo |
|- ( E* x e. A ps <-> E* x ( x e. A /\ ps ) ) |
| 7 |
|
df-rmo |
|- ( E* y e. A ch <-> E* y ( y e. A /\ ch ) ) |
| 8 |
5 6 7
|
3bitr4g |
|- ( ph -> ( E* x e. A ps <-> E* y e. A ch ) ) |