Metamath Proof Explorer


Theorem cbvreudavw

Description: Change bound variable in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvreudavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvreudavw
|- ( ph -> ( E! x e. A ps <-> E! y e. A ch ) )

Proof

Step Hyp Ref Expression
1 cbvreudavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
4 3 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) )
5 4 cbveudavw
 |-  ( ph -> ( E! x ( x e. A /\ ps ) <-> E! y ( y e. A /\ ch ) ) )
6 df-reu
 |-  ( E! x e. A ps <-> E! x ( x e. A /\ ps ) )
7 df-reu
 |-  ( E! y e. A ch <-> E! y ( y e. A /\ ch ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( E! x e. A ps <-> E! y e. A ch ) )