Metamath Proof Explorer


Theorem cbvreudavw

Description: Change bound variable in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvreudavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvreudavw ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑦𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvreudavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 adantl ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐴 ) )
4 3 1 anbi12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐴𝜒 ) ) )
5 4 cbveudavw ( 𝜑 → ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑦 ( 𝑦𝐴𝜒 ) ) )
6 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
7 df-reu ( ∃! 𝑦𝐴 𝜒 ↔ ∃! 𝑦 ( 𝑦𝐴𝜒 ) )
8 5 6 7 3bitr4g ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑦𝐴 𝜒 ) )