Metamath Proof Explorer


Theorem cbveudavw

Description: Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbveudavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbveudavw ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbveudavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 1 cbvexdvaw ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) )
3 1 cbvmodavw ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑦 𝜒 ) )
4 2 3 anbi12d ( 𝜑 → ( ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) ↔ ( ∃ 𝑦 𝜒 ∧ ∃* 𝑦 𝜒 ) ) )
5 df-eu ( ∃! 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) )
6 df-eu ( ∃! 𝑦 𝜒 ↔ ( ∃ 𝑦 𝜒 ∧ ∃* 𝑦 𝜒 ) )
7 4 5 6 3bitr4g ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑦 𝜒 ) )