Description: Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbveudavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | cbveudavw | ⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑦 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbveudavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | cbvexdvaw | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 ↔ ∃ 𝑦 𝜒 ) ) |
3 | 1 | cbvmodavw | ⊢ ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑦 𝜒 ) ) |
4 | 2 3 | anbi12d | ⊢ ( 𝜑 → ( ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) ↔ ( ∃ 𝑦 𝜒 ∧ ∃* 𝑦 𝜒 ) ) ) |
5 | df-eu | ⊢ ( ∃! 𝑥 𝜓 ↔ ( ∃ 𝑥 𝜓 ∧ ∃* 𝑥 𝜓 ) ) | |
6 | df-eu | ⊢ ( ∃! 𝑦 𝜒 ↔ ( ∃ 𝑦 𝜒 ∧ ∃* 𝑦 𝜒 ) ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑦 𝜒 ) ) |