Metamath Proof Explorer


Theorem cbvmodavw

Description: Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvmodavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvmodavw ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvmodavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 equequ1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
3 2 adantl ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
4 1 3 imbi12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝜓𝑥 = 𝑧 ) ↔ ( 𝜒𝑦 = 𝑧 ) ) )
5 4 cbvaldvaw ( 𝜑 → ( ∀ 𝑥 ( 𝜓𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( 𝜒𝑦 = 𝑧 ) ) )
6 5 exbidv ( 𝜑 → ( ∃ 𝑧𝑥 ( 𝜓𝑥 = 𝑧 ) ↔ ∃ 𝑧𝑦 ( 𝜒𝑦 = 𝑧 ) ) )
7 df-mo ( ∃* 𝑥 𝜓 ↔ ∃ 𝑧𝑥 ( 𝜓𝑥 = 𝑧 ) )
8 df-mo ( ∃* 𝑦 𝜒 ↔ ∃ 𝑧𝑦 ( 𝜒𝑦 = 𝑧 ) )
9 6 7 8 3bitr4g ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑦 𝜒 ) )