Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmodavw.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
4 |
1 3
|
imbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝜓 → 𝑥 = 𝑧 ) ↔ ( 𝜒 → 𝑦 = 𝑧 ) ) ) |
5 |
4
|
cbvaldvaw |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜓 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( 𝜒 → 𝑦 = 𝑧 ) ) ) |
6 |
5
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∀ 𝑥 ( 𝜓 → 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜒 → 𝑦 = 𝑧 ) ) ) |
7 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜓 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜓 → 𝑥 = 𝑧 ) ) |
8 |
|
df-mo |
⊢ ( ∃* 𝑦 𝜒 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜒 → 𝑦 = 𝑧 ) ) |
9 |
6 7 8
|
3bitr4g |
⊢ ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑦 𝜒 ) ) |