Metamath Proof Explorer


Theorem cbvmodavw

Description: Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvmodavw.1 φ x = y ψ χ
Assertion cbvmodavw φ * x ψ * y χ

Proof

Step Hyp Ref Expression
1 cbvmodavw.1 φ x = y ψ χ
2 equequ1 x = y x = z y = z
3 2 adantl φ x = y x = z y = z
4 1 3 imbi12d φ x = y ψ x = z χ y = z
5 4 cbvaldvaw φ x ψ x = z y χ y = z
6 5 exbidv φ z x ψ x = z z y χ y = z
7 df-mo * x ψ z x ψ x = z
8 df-mo * y χ z y χ y = z
9 6 7 8 3bitr4g φ * x ψ * y χ