Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmodavw.1 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
2 |
|
equequ1 |
|- ( x = y -> ( x = z <-> y = z ) ) |
3 |
2
|
adantl |
|- ( ( ph /\ x = y ) -> ( x = z <-> y = z ) ) |
4 |
1 3
|
imbi12d |
|- ( ( ph /\ x = y ) -> ( ( ps -> x = z ) <-> ( ch -> y = z ) ) ) |
5 |
4
|
cbvaldvaw |
|- ( ph -> ( A. x ( ps -> x = z ) <-> A. y ( ch -> y = z ) ) ) |
6 |
5
|
exbidv |
|- ( ph -> ( E. z A. x ( ps -> x = z ) <-> E. z A. y ( ch -> y = z ) ) ) |
7 |
|
df-mo |
|- ( E* x ps <-> E. z A. x ( ps -> x = z ) ) |
8 |
|
df-mo |
|- ( E* y ch <-> E. z A. y ( ch -> y = z ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ph -> ( E* x ps <-> E* y ch ) ) |