Metamath Proof Explorer


Theorem cbvmodavw

Description: Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvmodavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvmodavw
|- ( ph -> ( E* x ps <-> E* y ch ) )

Proof

Step Hyp Ref Expression
1 cbvmodavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 equequ1
 |-  ( x = y -> ( x = z <-> y = z ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x = z <-> y = z ) )
4 1 3 imbi12d
 |-  ( ( ph /\ x = y ) -> ( ( ps -> x = z ) <-> ( ch -> y = z ) ) )
5 4 cbvaldvaw
 |-  ( ph -> ( A. x ( ps -> x = z ) <-> A. y ( ch -> y = z ) ) )
6 5 exbidv
 |-  ( ph -> ( E. z A. x ( ps -> x = z ) <-> E. z A. y ( ch -> y = z ) ) )
7 df-mo
 |-  ( E* x ps <-> E. z A. x ( ps -> x = z ) )
8 df-mo
 |-  ( E* y ch <-> E. z A. y ( ch -> y = z ) )
9 6 7 8 3bitr4g
 |-  ( ph -> ( E* x ps <-> E* y ch ) )