Metamath Proof Explorer


Theorem cbveudavw

Description: Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbveudavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbveudavw
|- ( ph -> ( E! x ps <-> E! y ch ) )

Proof

Step Hyp Ref Expression
1 cbveudavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 cbvexdvaw
 |-  ( ph -> ( E. x ps <-> E. y ch ) )
3 1 cbvmodavw
 |-  ( ph -> ( E* x ps <-> E* y ch ) )
4 2 3 anbi12d
 |-  ( ph -> ( ( E. x ps /\ E* x ps ) <-> ( E. y ch /\ E* y ch ) ) )
5 df-eu
 |-  ( E! x ps <-> ( E. x ps /\ E* x ps ) )
6 df-eu
 |-  ( E! y ch <-> ( E. y ch /\ E* y ch ) )
7 4 5 6 3bitr4g
 |-  ( ph -> ( E! x ps <-> E! y ch ) )