Metamath Proof Explorer


Theorem cbveudavw

Description: Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbveudavw.1 φ x = y ψ χ
Assertion cbveudavw φ ∃! x ψ ∃! y χ

Proof

Step Hyp Ref Expression
1 cbveudavw.1 φ x = y ψ χ
2 1 cbvexdvaw φ x ψ y χ
3 1 cbvmodavw φ * x ψ * y χ
4 2 3 anbi12d φ x ψ * x ψ y χ * y χ
5 df-eu ∃! x ψ x ψ * x ψ
6 df-eu ∃! y χ y χ * y χ
7 4 5 6 3bitr4g φ ∃! x ψ ∃! y χ