Description: Change bound variable in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvrmodavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | cbvrmodavw | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑦 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrmodavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 4 | 3 1 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 5 | 4 | cbvmodavw | ⊢ ( 𝜑 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 7 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐴 𝜒 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑦 ∈ 𝐴 𝜒 ) ) |