Metamath Proof Explorer


Theorem cbvreudavw

Description: Change bound variable in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvreudavw.1 φ x = y ψ χ
Assertion cbvreudavw φ ∃! x A ψ ∃! y A χ

Proof

Step Hyp Ref Expression
1 cbvreudavw.1 φ x = y ψ χ
2 eleq1w x = y x A y A
3 2 adantl φ x = y x A y A
4 3 1 anbi12d φ x = y x A ψ y A χ
5 4 cbveudavw φ ∃! x x A ψ ∃! y y A χ
6 df-reu ∃! x A ψ ∃! x x A ψ
7 df-reu ∃! y A χ ∃! y y A χ
8 5 6 7 3bitr4g φ ∃! x A ψ ∃! y A χ