Metamath Proof Explorer


Theorem cbvmptdavw

Description: Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvmptdavw.1
|- ( ( ph /\ x = y ) -> B = C )
Assertion cbvmptdavw
|- ( ph -> ( x e. A |-> B ) = ( y e. A |-> C ) )

Proof

Step Hyp Ref Expression
1 cbvmptdavw.1
 |-  ( ( ph /\ x = y ) -> B = C )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
4 1 eqeq2d
 |-  ( ( ph /\ x = y ) -> ( t = B <-> t = C ) )
5 3 4 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ t = B ) <-> ( y e. A /\ t = C ) ) )
6 5 cbvopab1davw
 |-  ( ph -> { <. x , t >. | ( x e. A /\ t = B ) } = { <. y , t >. | ( y e. A /\ t = C ) } )
7 df-mpt
 |-  ( x e. A |-> B ) = { <. x , t >. | ( x e. A /\ t = B ) }
8 df-mpt
 |-  ( y e. A |-> C ) = { <. y , t >. | ( y e. A /\ t = C ) }
9 6 7 8 3eqtr4g
 |-  ( ph -> ( x e. A |-> B ) = ( y e. A |-> C ) )