Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmptdavw.1 |
|- ( ( ph /\ x = y ) -> B = C ) |
2 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
3 |
2
|
adantl |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) ) |
4 |
1
|
eqeq2d |
|- ( ( ph /\ x = y ) -> ( t = B <-> t = C ) ) |
5 |
3 4
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ t = B ) <-> ( y e. A /\ t = C ) ) ) |
6 |
5
|
cbvopab1davw |
|- ( ph -> { <. x , t >. | ( x e. A /\ t = B ) } = { <. y , t >. | ( y e. A /\ t = C ) } ) |
7 |
|
df-mpt |
|- ( x e. A |-> B ) = { <. x , t >. | ( x e. A /\ t = B ) } |
8 |
|
df-mpt |
|- ( y e. A |-> C ) = { <. y , t >. | ( y e. A /\ t = C ) } |
9 |
6 7 8
|
3eqtr4g |
|- ( ph -> ( x e. A |-> B ) = ( y e. A |-> C ) ) |