Step |
Hyp |
Ref |
Expression |
1 |
|
cbvitgdavw.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) |
2 |
1
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) ) |
3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
5 |
4
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) ) ) |
6 |
5
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) = if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) |
7 |
2 6
|
csbeq12dv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) = ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) |
8 |
7
|
cbvmptdavw |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) = ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) ) |
11 |
10
|
sumeq2sdv |
⊢ ( 𝜑 → Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) = Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) ) |
12 |
|
df-itg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) |
13 |
|
df-itg |
⊢ ∫ 𝐴 𝐶 d 𝑦 = Σ 𝑡 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑡 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑡 ) ) ) / 𝑣 ⦌ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ 𝑣 ) , 𝑣 , 0 ) ) ) ) |
14 |
11 12 13
|
3eqtr4g |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦 ) |