Metamath Proof Explorer


Theorem cbvditgdavw

Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvditgdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
Assertion cbvditgdavw ( 𝜑 → ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑦 )

Proof

Step Hyp Ref Expression
1 cbvditgdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
2 1 cbvitgdavw ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑦 )
3 1 cbvitgdavw ( 𝜑 → ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 = ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 )
4 3 negeqd ( 𝜑 → - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 = - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 )
5 2 4 ifeq12d ( 𝜑 → if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 ) = if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑦 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 ) )
6 df-ditg ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 )
7 df-ditg ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑦 = if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐷 d 𝑦 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐷 d 𝑦 )
8 5 6 7 3eqtr4g ( 𝜑 → ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑦 )