Metamath Proof Explorer


Theorem cbveuw

Description: Version of cbveu with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 25-Nov-1994) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbveuw.1
|- F/ y ph
cbveuw.2
|- F/ x ps
cbveuw.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbveuw
|- ( E! x ph <-> E! y ps )

Proof

Step Hyp Ref Expression
1 cbveuw.1
 |-  F/ y ph
2 cbveuw.2
 |-  F/ x ps
3 cbveuw.3
 |-  ( x = y -> ( ph <-> ps ) )
4 1 2 3 cbvexv1
 |-  ( E. x ph <-> E. y ps )
5 1 2 3 cbvmow
 |-  ( E* x ph <-> E* y ps )
6 4 5 anbi12i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. y ps /\ E* y ps ) )
7 df-eu
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )
8 df-eu
 |-  ( E! y ps <-> ( E. y ps /\ E* y ps ) )
9 6 7 8 3bitr4i
 |-  ( E! x ph <-> E! y ps )