| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvoprab3davw.1 |
|- ( ( ph /\ z = w ) -> ( ps <-> ch ) ) |
| 2 |
|
simpr |
|- ( ( ph /\ z = w ) -> z = w ) |
| 3 |
2
|
opeq2d |
|- ( ( ph /\ z = w ) -> <. <. x , y >. , z >. = <. <. x , y >. , w >. ) |
| 4 |
3
|
eqeq2d |
|- ( ( ph /\ z = w ) -> ( t = <. <. x , y >. , z >. <-> t = <. <. x , y >. , w >. ) ) |
| 5 |
4 1
|
anbi12d |
|- ( ( ph /\ z = w ) -> ( ( t = <. <. x , y >. , z >. /\ ps ) <-> ( t = <. <. x , y >. , w >. /\ ch ) ) ) |
| 6 |
5
|
cbvexdvaw |
|- ( ph -> ( E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. w ( t = <. <. x , y >. , w >. /\ ch ) ) ) |
| 7 |
6
|
2exbidv |
|- ( ph -> ( E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) <-> E. x E. y E. w ( t = <. <. x , y >. , w >. /\ ch ) ) ) |
| 8 |
7
|
abbidv |
|- ( ph -> { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } = { t | E. x E. y E. w ( t = <. <. x , y >. , w >. /\ ch ) } ) |
| 9 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ps } = { t | E. x E. y E. z ( t = <. <. x , y >. , z >. /\ ps ) } |
| 10 |
|
df-oprab |
|- { <. <. x , y >. , w >. | ch } = { t | E. x E. y E. w ( t = <. <. x , y >. , w >. /\ ch ) } |
| 11 |
8 9 10
|
3eqtr4g |
|- ( ph -> { <. <. x , y >. , z >. | ps } = { <. <. x , y >. , w >. | ch } ) |