Metamath Proof Explorer


Theorem cbvoprab3davw

Description: Change the third bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab3davw.1 ( ( 𝜑𝑧 = 𝑤 ) → ( 𝜓𝜒 ) )
Assertion cbvoprab3davw ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvoprab3davw.1 ( ( 𝜑𝑧 = 𝑤 ) → ( 𝜓𝜒 ) )
2 simpr ( ( 𝜑𝑧 = 𝑤 ) → 𝑧 = 𝑤 )
3 2 opeq2d ( ( 𝜑𝑧 = 𝑤 ) → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ )
4 3 eqeq2d ( ( 𝜑𝑧 = 𝑤 ) → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ) )
5 4 1 anbi12d ( ( 𝜑𝑧 = 𝑤 ) → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∧ 𝜒 ) ) )
6 5 cbvexdvaw ( 𝜑 → ( ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∧ 𝜒 ) ) )
7 6 2exbidv ( 𝜑 → ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑥𝑦𝑤 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∧ 𝜒 ) ) )
8 7 abbidv ( 𝜑 → { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑥𝑦𝑤 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∧ 𝜒 ) } )
9 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
10 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑤 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∧ 𝜒 ) }
11 8 9 10 3eqtr4g ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∣ 𝜒 } )