Metamath Proof Explorer


Theorem cbvoprab123davw

Description: Change all bound variables in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab123davw.1 ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
Assertion cbvoprab123davw ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvoprab123davw.1 ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( 𝜓𝜒 ) )
2 simplr ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) → 𝑥 = 𝑤 )
3 simpr ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) → 𝑦 = 𝑢 )
4 2 3 opeq12d ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑢 ⟩ )
5 4 adantr ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑢 ⟩ )
6 simpr ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → 𝑧 = 𝑣 )
7 5 6 opeq12d ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ )
8 7 eqeq2d ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ) )
9 8 1 anbi12d ( ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) ∧ 𝑧 = 𝑣 ) → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
10 9 cbvexdvaw ( ( ( 𝜑𝑥 = 𝑤 ) ∧ 𝑦 = 𝑢 ) → ( ∃ 𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
11 10 cbvexdvaw ( ( 𝜑𝑥 = 𝑤 ) → ( ∃ 𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
12 11 cbvexdvaw ( 𝜑 → ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) ) )
13 12 abbidv ( 𝜑 → { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑤𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) } )
14 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
15 df-oprab { ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑤𝑢𝑣 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∧ 𝜒 ) }
16 13 14 15 3eqtr4g ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑢 ⟩ , 𝑣 ⟩ ∣ 𝜒 } )