Metamath Proof Explorer


Theorem cbvreudavw2

Description: Change bound variable and quantifier domain in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvreudavw2.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
cbvreudavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvreudavw2
|- ( ph -> ( E! x e. A ps <-> E! y e. B ch ) )

Proof

Step Hyp Ref Expression
1 cbvreudavw2.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 cbvreudavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 simpr
 |-  ( ( ph /\ x = y ) -> x = y )
4 3 2 eleq12d
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) )
5 4 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) )
6 5 cbveudavw
 |-  ( ph -> ( E! x ( x e. A /\ ps ) <-> E! y ( y e. B /\ ch ) ) )
7 df-reu
 |-  ( E! x e. A ps <-> E! x ( x e. A /\ ps ) )
8 df-reu
 |-  ( E! y e. B ch <-> E! y ( y e. B /\ ch ) )
9 6 7 8 3bitr4g
 |-  ( ph -> ( E! x e. A ps <-> E! y e. B ch ) )