Step |
Hyp |
Ref |
Expression |
1 |
|
cbvreudavw2.1 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
2 |
|
cbvreudavw2.2 |
|- ( ( ph /\ x = y ) -> A = B ) |
3 |
|
simpr |
|- ( ( ph /\ x = y ) -> x = y ) |
4 |
3 2
|
eleq12d |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) ) |
5 |
4 1
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) ) |
6 |
5
|
cbveudavw |
|- ( ph -> ( E! x ( x e. A /\ ps ) <-> E! y ( y e. B /\ ch ) ) ) |
7 |
|
df-reu |
|- ( E! x e. A ps <-> E! x ( x e. A /\ ps ) ) |
8 |
|
df-reu |
|- ( E! y e. B ch <-> E! y ( y e. B /\ ch ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ph -> ( E! x e. A ps <-> E! y e. B ch ) ) |