Step |
Hyp |
Ref |
Expression |
1 |
|
cbvrabdavw2.1 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
2 |
|
cbvrabdavw2.2 |
|- ( ( ph /\ x = y ) -> A = B ) |
3 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
4 |
3
|
adantl |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) ) |
5 |
2
|
eleq2d |
|- ( ( ph /\ x = y ) -> ( y e. A <-> y e. B ) ) |
6 |
4 5
|
bitrd |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) ) |
7 |
6 1
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. B /\ ch ) ) ) |
8 |
7
|
cbvabdavw |
|- ( ph -> { x | ( x e. A /\ ps ) } = { y | ( y e. B /\ ch ) } ) |
9 |
|
df-rab |
|- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
10 |
|
df-rab |
|- { y e. B | ch } = { y | ( y e. B /\ ch ) } |
11 |
8 9 10
|
3eqtr4g |
|- ( ph -> { x e. A | ps } = { y e. B | ch } ) |