| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvrabdavw2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
cbvrabdavw2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
| 3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 5 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 6 |
4 5
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 7 |
6 1
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 8 |
7
|
cbvabdavw |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) } ) |
| 9 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } |
| 10 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜒 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) } |
| 11 |
8 9 10
|
3eqtr4g |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |