Description: Change bound variable and domain in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviundavw2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) | |
| cbviundavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) | ||
| Assertion | cbviundavw2 | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐵 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviundavw2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) | |
| 2 | cbviundavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) | |
| 3 | 1 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷 ) ) |
| 4 | 3 2 | cbvrexdva2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 ) ) |
| 5 | 4 | abbidv | ⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∃ 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 } ) |
| 6 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
| 7 | df-iun | ⊢ ∪ 𝑦 ∈ 𝐵 𝐷 = { 𝑡 ∣ ∃ 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 } | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐵 𝐷 ) |