Metamath Proof Explorer


Theorem cbviindavw2

Description: Change bound variable and domain in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbviindavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
cbviindavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
Assertion cbviindavw2 ( 𝜑 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 cbviindavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
2 cbviindavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
3 1 eleq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝐶𝑡𝐷 ) )
4 3 2 cbvraldva2 ( 𝜑 → ( ∀ 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑦𝐵 𝑡𝐷 ) )
5 4 abbidv ( 𝜑 → { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∀ 𝑦𝐵 𝑡𝐷 } )
6 df-iin 𝑥𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐶 }
7 df-iin 𝑦𝐵 𝐷 = { 𝑡 ∣ ∀ 𝑦𝐵 𝑡𝐷 }
8 5 6 7 3eqtr4g ( 𝜑 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷 )