| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmptdavw2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) |
| 2 |
|
cbvmptdavw2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
| 3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 5 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 6 |
4 5
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 7 |
1
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 = 𝐶 ↔ 𝑡 = 𝐷 ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑡 = 𝐷 ) ) ) |
| 9 |
8
|
cbvopab1davw |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐶 ) } = { 〈 𝑦 , 𝑡 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑡 = 𝐷 ) } ) |
| 10 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐶 ) } |
| 11 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) = { 〈 𝑦 , 𝑡 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑡 = 𝐷 ) } |
| 12 |
9 10 11
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 𝐷 ) ) |