Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmptdavw2.1 |
|- ( ( ph /\ x = y ) -> C = D ) |
2 |
|
cbvmptdavw2.2 |
|- ( ( ph /\ x = y ) -> A = B ) |
3 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
4 |
3
|
adantl |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) ) |
5 |
2
|
eleq2d |
|- ( ( ph /\ x = y ) -> ( y e. A <-> y e. B ) ) |
6 |
4 5
|
bitrd |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) ) |
7 |
1
|
eqeq2d |
|- ( ( ph /\ x = y ) -> ( t = C <-> t = D ) ) |
8 |
6 7
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ t = C ) <-> ( y e. B /\ t = D ) ) ) |
9 |
8
|
cbvopab1davw |
|- ( ph -> { <. x , t >. | ( x e. A /\ t = C ) } = { <. y , t >. | ( y e. B /\ t = D ) } ) |
10 |
|
df-mpt |
|- ( x e. A |-> C ) = { <. x , t >. | ( x e. A /\ t = C ) } |
11 |
|
df-mpt |
|- ( y e. B |-> D ) = { <. y , t >. | ( y e. B /\ t = D ) } |
12 |
9 10 11
|
3eqtr4g |
|- ( ph -> ( x e. A |-> C ) = ( y e. B |-> D ) ) |