Metamath Proof Explorer


Theorem cbvmptdavw2

Description: Change bound variable and domain in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvmptdavw2.1
|- ( ( ph /\ x = y ) -> C = D )
cbvmptdavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvmptdavw2
|- ( ph -> ( x e. A |-> C ) = ( y e. B |-> D ) )

Proof

Step Hyp Ref Expression
1 cbvmptdavw2.1
 |-  ( ( ph /\ x = y ) -> C = D )
2 cbvmptdavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
4 3 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
5 2 eleq2d
 |-  ( ( ph /\ x = y ) -> ( y e. A <-> y e. B ) )
6 4 5 bitrd
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. B ) )
7 1 eqeq2d
 |-  ( ( ph /\ x = y ) -> ( t = C <-> t = D ) )
8 6 7 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ t = C ) <-> ( y e. B /\ t = D ) ) )
9 8 cbvopab1davw
 |-  ( ph -> { <. x , t >. | ( x e. A /\ t = C ) } = { <. y , t >. | ( y e. B /\ t = D ) } )
10 df-mpt
 |-  ( x e. A |-> C ) = { <. x , t >. | ( x e. A /\ t = C ) }
11 df-mpt
 |-  ( y e. B |-> D ) = { <. y , t >. | ( y e. B /\ t = D ) }
12 9 10 11 3eqtr4g
 |-  ( ph -> ( x e. A |-> C ) = ( y e. B |-> D ) )