Metamath Proof Explorer


Theorem cbvdisjdavw2

Description: Change bound variable and domain in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvdisjdavw2.1
|- ( ( ph /\ x = y ) -> C = D )
cbvdisjdavw2.2
|- ( ( ph /\ x = y ) -> A = B )
Assertion cbvdisjdavw2
|- ( ph -> ( Disj_ x e. A C <-> Disj_ y e. B D ) )

Proof

Step Hyp Ref Expression
1 cbvdisjdavw2.1
 |-  ( ( ph /\ x = y ) -> C = D )
2 cbvdisjdavw2.2
 |-  ( ( ph /\ x = y ) -> A = B )
3 1 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) )
4 3 2 cbvrmodavw2
 |-  ( ph -> ( E* x e. A t e. C <-> E* y e. B t e. D ) )
5 4 albidv
 |-  ( ph -> ( A. t E* x e. A t e. C <-> A. t E* y e. B t e. D ) )
6 df-disj
 |-  ( Disj_ x e. A C <-> A. t E* x e. A t e. C )
7 df-disj
 |-  ( Disj_ y e. B D <-> A. t E* y e. B t e. D )
8 5 6 7 3bitr4g
 |-  ( ph -> ( Disj_ x e. A C <-> Disj_ y e. B D ) )