Description: Change bound variable and domain in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvdisjdavw2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) | |
cbvdisjdavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) | ||
Assertion | cbvdisjdavw2 | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑦 ∈ 𝐵 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisjdavw2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐶 = 𝐷 ) | |
2 | cbvdisjdavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) | |
3 | 1 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷 ) ) |
4 | 3 2 | cbvrmodavw2 | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃* 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 ) ) |
5 | 4 | albidv | ⊢ ( 𝜑 → ( ∀ 𝑡 ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀ 𝑡 ∃* 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 ) ) |
6 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑡 ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ) | |
7 | df-disj | ⊢ ( Disj 𝑦 ∈ 𝐵 𝐷 ↔ ∀ 𝑡 ∃* 𝑦 ∈ 𝐵 𝑡 ∈ 𝐷 ) | |
8 | 5 6 7 | 3bitr4g | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑦 ∈ 𝐵 𝐷 ) ) |