Metamath Proof Explorer


Theorem cbvdisjdavw2

Description: Change bound variable and domain in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvdisjdavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
cbvdisjdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
Assertion cbvdisjdavw2 ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑦𝐵 𝐷 ) )

Proof

Step Hyp Ref Expression
1 cbvdisjdavw2.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
2 cbvdisjdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
3 1 eleq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝐶𝑡𝐷 ) )
4 3 2 cbvrmodavw2 ( 𝜑 → ( ∃* 𝑥𝐴 𝑡𝐶 ↔ ∃* 𝑦𝐵 𝑡𝐷 ) )
5 4 albidv ( 𝜑 → ( ∀ 𝑡 ∃* 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑡 ∃* 𝑦𝐵 𝑡𝐷 ) )
6 df-disj ( Disj 𝑥𝐴 𝐶 ↔ ∀ 𝑡 ∃* 𝑥𝐴 𝑡𝐶 )
7 df-disj ( Disj 𝑦𝐵 𝐷 ↔ ∀ 𝑡 ∃* 𝑦𝐵 𝑡𝐷 )
8 5 6 7 3bitr4g ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑦𝐵 𝐷 ) )