Metamath Proof Explorer


Theorem cbvdisjdavw2

Description: Change bound variable and domain in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvdisjdavw2.1 φ x = y C = D
cbvdisjdavw2.2 φ x = y A = B
Assertion cbvdisjdavw2 φ Disj x A C Disj y B D

Proof

Step Hyp Ref Expression
1 cbvdisjdavw2.1 φ x = y C = D
2 cbvdisjdavw2.2 φ x = y A = B
3 1 eleq2d φ x = y t C t D
4 3 2 cbvrmodavw2 φ * x A t C * y B t D
5 4 albidv φ t * x A t C t * y B t D
6 df-disj Disj x A C t * x A t C
7 df-disj Disj y B D t * y B t D
8 5 6 7 3bitr4g φ Disj x A C Disj y B D